2u^2-9u-19=(u-3)(u-3)

Simple and best practice solution for 2u^2-9u-19=(u-3)(u-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2u^2-9u-19=(u-3)(u-3) equation:



2u^2-9u-19=(u-3)(u-3)
We move all terms to the left:
2u^2-9u-19-((u-3)(u-3))=0
We multiply parentheses ..
2u^2-((+u^2-3u-3u+9))-9u-19=0
We calculate terms in parentheses: -((+u^2-3u-3u+9)), so:
(+u^2-3u-3u+9)
We get rid of parentheses
u^2-3u-3u+9
We add all the numbers together, and all the variables
u^2-6u+9
Back to the equation:
-(u^2-6u+9)
We add all the numbers together, and all the variables
2u^2-9u-(u^2-6u+9)-19=0
We get rid of parentheses
2u^2-u^2-9u+6u-9-19=0
We add all the numbers together, and all the variables
u^2-3u-28=0
a = 1; b = -3; c = -28;
Δ = b2-4ac
Δ = -32-4·1·(-28)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-11}{2*1}=\frac{-8}{2} =-4 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+11}{2*1}=\frac{14}{2} =7 $

See similar equations:

| 4/5=13/x | | 2(y+7)(-y+8)=0 | | -4=2–6h | | Y=40+0.60x | | Y=40+0.60c | | ×+y=17 | | 4(3x-1)=30 | | –5x+4=–1 | | X^3+10x^2+25x-63=0 | | 2(3y-5)+5(y-3)=4y+3 | | 10^2=(-8y+9y) | | 10r^2-29+10=0 | | 4k-4+3k+3=34 | | 2*2n-4=64*n-6 | | -5-15y-1=2(7y-16)-y | | 0.5=(x-1.91)÷0.03 | | Y=-7x-42 | | (3,2);m=-2 | | 3x+6+2x+8=24x=5 | | 12(3x-2)=18(2x+9) | | 3x+6+2x+8=24 | | x32=38 | | -16x2+105x+34=0 | | 3k+6+2k+8=24 | | 3(k+2)+2(k+4)=24 | | -7x=9-15/4 | | 3(x+2)+2(x+4)=24 | | 5^2x=610 | | 1/4(4t-6)=t+6/8 | | T(4x-7)=5x-9 | | 7x+7=8-(9x-2) | | 2x+6=6-(6x-3) |

Equations solver categories